Multiple Imputation Using Deep Denoising Autoencoders
نویسندگان
چکیده
Missing data is a significant problem impacting all domains. State-of-the-art framework for minimizing missing data bias is multiple imputation, for which the choice of an imputation model remains nontrivial. We propose a multiple imputation model based on overcomplete deep denoising autoencoders. Our proposed model is capable of handling different data types, missingness patterns, missingness proportions and distributions. Evaluation on several real life datasets show our proposed model significantly outperforms current state-of-the-art methods under varying conditions while simultaneously improving end of the line analytics.
منابع مشابه
Proposition of a Theoretical Model for Missing Data Imputation using Deep Learning and Evolutionary Algorithms
In the last couple of decades, there has been major advancements in the domain of missing data imputation. The techniques in the domain include amongst others: Expectation Maximization, Neural Networks with Evolutionary Algorithms or optimization techniques and K-Nearest Neighbor approaches to solve the problem. The presence of missing data entries in databases render the tasks of decision-maki...
متن کاملStacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
We explore an original strategy for building deep networks, based on stacking layers of denoising autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however shown on a benchmark of classification problems to yield significantly lower classification error, thu...
متن کاملAnalyzing noise in autoencoders and deep networks
Autoencoders have emerged as a useful framework for unsupervised learning of internal representations, and a wide variety of apparently conceptually disparate regularization techniques have been proposed to generate useful features. Here we extend existing denoising autoencoders to additionally inject noise before the nonlinearity, and at the hidden unit activations. We show that a wide variety...
متن کاملMid-level Features for Audio Chord Estimation using Stacked Denoising Autoencoders
Deep neural networks composed of several pre-trained layers have been successfully applied to various tasks related to audio processing. Stacked denoising autoencoders represent one type of such networks. They are discussed in this paper in application to audio feature extraction for audio chord estimation task. The features obtained from audio spectrogram with the help of autoencoders can be u...
متن کاملMarginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.02737 شماره
صفحات -
تاریخ انتشار 2017